Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 255: 121549, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38564891

RESUMO

Conventional disinfection processes, such as chlorination and UV radiation, are ineffective in controling antibiotic-resistant bacteria, especially disinfection residual Enterobacteriaceae (DRE) encoding ß-lactamases, some of which have been classified as "critical priority pathogens" by the World Health Organization. However, few studies have focused on the transferability, phenotype, and genetic characteristics of DRE-derived plasmids encoding ß-lactamases, especially extended-spectrum ß-lactamases and carbapenemases. In this study, we isolated 10 typical DRE harboring plasmid-mediated blaNDM, blaCTX-M, or blaTEM in post-disinfection effluent from two wastewater treatment plants (WWTPs), with transfer frequency ranging from 1.69 × 10-6 to 3.02 × 10-5. According to genomic maps of plasmids, all blaNDM and blaTEM were cascaded with IS26, and blaCTX-M was adjacent to ISEcp1 or IS26, indicating the important role of these elements in the movement of ß-lactamase-encoding genes. The presence of intact class 1 integrons on pWTPN-01 and pWTPC-03 suggested the ability of these DRE-derived plasmids to integrate other exogenous antibiotic resistance genes (ARGs). The coexistence of antibiotic, disinfectant, and heavy metal resistance genes on the same plasmid (e.g., pWTPT-03) implied the facilitating role of disinfectants and heavy metals in the transmission of DRE-derived ARGs. Notably, two plasmid transconjugants exhibited no discernible competitive fitness cost, suggesting a heightened environmental persistence. Furthermore, enhanced virulence induced by ß-lactamase-encoding plasmids in their hosts was confirmed using Galleria mellonella infection models, which might be attributed to plasmid-mediated virulence genes. Overall, this study describes the landscape of ß-lactamase-encoding plasmids in DRE, and highlights the urgent need for advanced control of DRE to keep environmental and ecological security.

2.
Environ Pollut ; 346: 123682, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38428788

RESUMO

Microplastics (MPs) in soil can influence CO2 dynamics by altering organic carbon (OC) and microbial composition. Nevertheless, the fluctuation of CO2 response attributed to MPs in mangrove sediments is unclear. This study explores the impact of micro-sized polypropylene (mPP) particles on the carbon dynamics of intertidal mangrove sediments. In the high-tide level sediment, after 28 days, the cumulative CO2 levels for varying mPP dosages were as follows: 496.86 ± 2.07, 430.38 ± 3.84 and 447.09 ± 1.72 mg kg-1 for 0.1%, 1% and 10% (w/w) mPP, respectively. The CO2 emissions were found to be increased with a 0.1% (w/w) mPP level and decreased with 1% and 10% (w/w) mPP at high-tide level sediment, suggesting a tide level-specific dose dependence of the CO2 emission pattern in mangrove sediments. Overall, results indicated that the presence of mPP in mangrove sediments would potentially affect intertidal total CO2 storage under given experimental conditions.


Assuntos
Microplásticos , Polipropilenos , Plásticos , Dióxido de Carbono , Áreas Alagadas , Sedimentos Geológicos
3.
Aquat Toxicol ; 265: 106745, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37944327

RESUMO

Despite growing interest in conventional microplastics (CMPs) and their toxicological effects on aquatic species, little is known about biodegradable microplastics (BMPs) and their corresponding implications for aquatic life. Here, tilapia (Oreochromis mossambicus) were semi-statically exposed for 14 days to the bio-based plastic polylactic acid (PLA, 100 µg/L, 2.52 ± 0.46 µm) and the petroleum-based plastic polyvinyl chloride (PVC, 100 µg/L, 1.58 ± 0.36 µm). The results showed that ingesting the above two types of microplastics (MPs) led to oxidative stress in the fish gut, and damage to gut tissues and organelles, and PLA resulted in more obvious gut tissue edema than PVC. Furthermore, PLA caused increased levels of gut microbiota dysbiosis and a decrease in the abundance of the genus Cetobacterium, which is linked to vitamin B-12 synthesis, whereas an opposite relationship was observed on PVC. Metabolomic analysis indicated that PVC caused a significant down-regulation of orotic acid, co-metabolite of folic acid with vitamin B-12, while PLA did not affect orotic acid, which may lead to the accumulation of folic acid in fish. The joint analysis found that MPs disturbed gut metabolism homeostasis, implying that abnormal gut microbiota metabolites may be a key mechanism for MPs to induce tissue damage and oxidative stress in the gut. Overall, this study systematically illustrates the differential toxic effects of BMPs and CMPs on tilapia through gut microbiota and metabolite interactions, which will contribute to assessing the risks of BMPs to organismal health.


Assuntos
Tilápia , Poluentes Químicos da Água , Animais , Microplásticos/toxicidade , Plásticos , Ácido Orótico , Poluentes Químicos da Água/toxicidade , Ácido Fólico , Poliésteres , Intestinos , Vitaminas
4.
Aquat Toxicol ; 261: 106638, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37517318

RESUMO

Existing studies have shown that microplastics (MPs) as artificial surfaces can be colonized by plankton microorganisms. However, systematic research on exploring the aggregation formation process of MPs and microalgae is still lacking and particularly the influencing factors of aggregation remain to be elucidated. Therefore, this study investigated the heterogeneous aggregation process between various microalgal species (i.e., Chlorella vulgaris, Scenedesmus obliquus, Tetraselmis subcordiformis, Chaetoceros müelleri and Streptococcus westermani) and MPs (i.e., mPS and mPLA) with different sizes (i.e., 74 µm and 613 µm), concentrations (i.e., 0.1 g/L, 1 g/L and 2 g/L) and shapes (i.e., the particle and sheet). The results showed that microalgae can first attach to the holes or protrusions of MPs and highly accumulate in the local region, and then multi-layer aggregation can be formed subsequently. The aggregation degree between MPs and microalgae was closely related to the MPs shape and size, and was less related to the MPs concentration. The aggregation speed of small-sized MPs (e.g., 74 µm) was faster than the large-sized ones (e.g., 613 µm). The MPs in a shape of sheet were more obvious than those in particle on their aggregation with microalgae. The density of aggregates was increased compared with pristine MPs, which is related to the cell density and cell number of attached microalgae. For the same type of MPs, the aggregation degree for the tested microalgae was as follows: Scenedesmus obliquus > C. vulgaris > T. subcordiformis > C. müelleri > S. westermani. Meanwhile, MPs inhibited cell growth of microalgae, particularly under the circumstance of their aggregation, by limiting the gas and mass transfer between microalgal cells and the extracellular environment. The heterogeneous aggregation of MPs and microalgae may provide new ideas for treatment and controlling of MPs in the environment.


Assuntos
Chlorella vulgaris , Clorofíceas , Microalgas , Poluentes Químicos da Água , Microplásticos/toxicidade , Microplásticos/metabolismo , Plásticos , Microalgas/metabolismo , Poluentes Químicos da Água/toxicidade
5.
Environ Pollut ; 328: 121643, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37062404

RESUMO

The leaching of microplastics (MPs) additives and their negative effects on aquatic organisms remain to be systematically elucidated. In this study, the toxicological effects of MPs leachate (micro-sized polyethylene (mPE) and micro-sized polyvinyl chloride (mPVC) acceleratedly leached by UVA for 15, 90, and 180 days in seawater) on microalga Chlorella vulgaris in terms of cell growth inhibition, oxidative stress, and transcriptomes were investigated. The leachate components of MPs aged for 90 days were further identified to elucidate the corresponding toxicity mechanisms of MPs on microalgal cells. The results revealed that both leachates of mPE and mPVC inhibited cell growth and increased oxidative stress in C. vulgaris, accompanied by a growth inhibition rate to microalgal cells of 4.0%-36.2% and 7.1%-48.2%, respectively. At the same mass concentration, the toxicological effects on C. vulgaris followed the order of mPVC leachate > mPE > mPE leachate > mPVC, whereas MPs leaching time indicated no change in MPs leaching toxicity. Furthermore, the gene functions of "translation, ribosomal structure and biogenesis" were mostly affected by MPs leachate. Compared to mPE leachate and pure MPs, the stronger inhibitory effects of mPVC leachate on microalgal cells may be attributed to the fact that more substances were leached from the polymer of mPVC, including Zn, farnesol isomer a, 2,6-di-tert-butyl-4-methylphenol, and acetyl castor oil methyl ester. In summary, this study provides a better understanding of the ecotoxicological influences of MPs and MPs leachate, and offers a warning on the ecological risk caused by plastic additives.


Assuntos
Chlorella vulgaris , Microplásticos , Poluentes Químicos da Água , Proliferação de Células , Chlorella vulgaris/efeitos dos fármacos , Chlorella vulgaris/fisiologia , Microalgas , Microplásticos/toxicidade , Plásticos/toxicidade , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise
6.
Nat Commun ; 14(1): 1512, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36932078

RESUMO

Monolayer transition-metal dichalcogenide (TMD) materials have attracted a great attention because of their unique properties and promising applications in integrated optoelectronic devices. Being layered materials, they can be stacked vertically to fabricate artificial van der Waals lattices, which offer unique opportunities to tailor the electronic and optical properties. The integration of TMD heterostructures in planar microcavities working in strong coupling regime is particularly important to control the light-matter interactions and form robust polaritons, highly sought for room temperature applications. Here, we demonstrate the systematic control of the coupling-strength by embedding multiple WS2 monolayers in a planar microcavity. The vacuum Rabi splitting is enhanced from 36 meV for one monolayer up to 72 meV for the four-monolayer microcavity. In addition, carrying out time-resolved pump-probe experiments at room temperature we demonstrate the nature of polariton interactions which are dominated by phase space filling effects. Furthermore, we also observe the presence of long-living dark excitations in the multiple monolayer superlattices. Our results pave the way for the realization of polaritonic devices based on planar microcavities embedding multiple monolayers and could potentially lead the way for future devices towards the exploitation of interaction-driven phenomena at room temperature.

7.
Aquat Toxicol ; 255: 106395, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36628878

RESUMO

As one of the emerging pollutants, microplastics (MPs; <5 mm) can interact with co-contaminants such as petroleum in marine aquatic systems, and their combined toxicity has not been fully investigated. Therefore, this study focused on pollutants such as micro-sized polyethylene (mPE) and petroleum, aiming to explore their single and combined toxicities to microalga Chlorella vulgaris in terms of the cell growth, antioxidative enzymes, and nutrients utilization. The results showed that the MPs alone (particle sizes (i.e., 13, 165, 550 µm), concentrations (i.e., 0.01, 0.1, and 1 g/L), and aging degrees (i.e., aged for 0 d and 90 d under UVA)), and petroleum alone (5% water accommodated fraction, WAF), and their combinations (i.e., 5% WAF + 165 µm-0.1 g/L-aged 0 d mPE, 5% WAF + 165 µm-0.1 g/L-aged 90 d mPE) all posed toxicities risk to C. vulgaris, following an increase in oxidative stress. The cellular utilization of elements such as Fe, Si, Ca, and Mg was inhibited, whereas the uptake of Mn, NO3--N, and PO43--P increased as compared to the control experiments. Furthermore, the relationship between nutrients and growth indicators was analyzed using a structural equation model. The results indicated that Fe and Mn directly affected the indirect NO3--N absorption by C. vulgaris, which indirectly affected the dry cell weight (DCW) of the microalgae. The path coefficient of Fe and Mn affecting nitrate was 0.399 and 0.388, respectively. The absorption of N was the key step for C. vulgaris resist stress. This study provides a novel analysis of the effects of MPs on the growth of microalgae from the perspective of nutrient elements, thereby providing a useful basis for further exploration of the associated mechanisms.


Assuntos
Chlorella vulgaris , Microalgas , Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , Microplásticos/toxicidade , Plásticos , Antioxidantes/farmacologia , Poluição por Petróleo/análise , Poluentes Químicos da Água/toxicidade , Nutrientes/análise
8.
Ecotoxicol Environ Saf ; 245: 114102, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36152431

RESUMO

Although microplastics (MPs; <5 mm) may interact with co-contaminants (e.g., petroleum) in marine aquatic systems, little is known about their combined toxicity. Therefore, this study explored the toxicities and their mechanisms of micro-sized polyethylene (mPE) and their combination with petroleum to Chlorella vulgaris. The single MPs at various particle sizes, concentrations, and aging degree, single petroleum, and their combinations, were found to pose toxicities to C. vulgaris. This study also found the microcosm's microbial diversity changed. The microbial communities in the C. vulgaris biotopes were altered under exposure to mPE and petroleum, and were disturbed by external factors such as MPs particle size, concentration, aging time, and the combination with petroleum. Furthermore, as compared with the toxicity of petroleum on microalgal transcriptional function, mPE caused less toxic to C. vulgaris, and only impact the posttranslational modification, protein turnover, and signal transduction processes. Most importantly, mPE reduced petroleum toxicity in C. vulgaris via regulating the ABC transporter, eukaryotic ribosome synthesis, and the citrate cycle metabolic pathways. Overall, our findings could fundamentally provide insights into the joint ecotoxicological effects of MPs and petroleum, and highlight the potential risks of co-exsiting pollutants.


Assuntos
Chlorella vulgaris , Petróleo , Poluentes Químicos da Água , Transportadores de Cassetes de Ligação de ATP , Citratos , Microplásticos , Petróleo/toxicidade , Plásticos , Polietileno/toxicidade , Poluentes Químicos da Água/análise
9.
J Hazard Mater ; 439: 129686, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36104912

RESUMO

Recently, biodegradable plastics (BPs) as an alternative of conventional plastics have been widely advocated and applied. However, there is still a large research gap between the formation of secondary microplastics (MPs) and colonized microorganisms on their surface under long-term aging in different environments. In this study, the generation of secondary MPs and the formation of surface biofilms on the micro-sized (3-5 mm) biodegradable plastic poly (butyleneadipate-co-terephthalate) (BP-PBAT) and conventional plastic polyvinyl chloride (CP-PVC) under long-term UV aging was investigated. The results showed that hundreds and even thousands of MPs (185.53 ± 85.73 items/g - 1473.27 ± 143.67 items/g) were generated by BP-PBAT and CP-PVC after aged for 90 days, and the abundance of MPs produced by BP-PBAT was significantly higher than that of CP-PVC. Moreover, the α diversities and detected OTU number of biofilm communities formed on MPs increased with MPs-aging. The genes related to the formation of biofilms was significantly expressed on aged MPs and the genes related to human pathogens and diseases were also detected in enriching on MPs surface. Overall, BPs may lead to greater ecological risks as it releases thousands of secondary MPs after being aged, and their environmental behavior needs to be further explored.


Assuntos
Plásticos Biodegradáveis , Microplásticos , Idoso , Envelhecimento , Humanos , Cloreto de Polivinila
10.
J Hazard Mater ; 434: 128891, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35430459

RESUMO

The use of biodegradable plastics (BPs) has been widely promoted in recent years, but before their complete degradation, the phase of microplastics (MPs) is inevitable. However, little information concerning the production of MPs from blended polymers is available. This study aimed to explore the characteristics of MPs produced from blended plastics and the development of biofilms on plastic surfaces under long-term aging. Here, three blended materials (i.e., PBAT (53%)+PLA (10%)+Starch (20%), PBAT (80%)+Starch (20%), HDPE (60%)+CaCO3 (40%)) were aged for 90 days in air, deionized (DI) water and seawater. The results showed massive production of MPs (9653 ± 3920-20,348 ± 5857 items/g) from blended plastics accompanied by a large quantity of flocculent substances during 90 days aging period. Furthermore, the richness of bacteria communities on hydrophobic plastics (i.e., PBAT (53%)+PLA (10%)+Starch (20%), PBAT (80%)+Starch (20%)) was higher than hydrophilic plastics (i.e., HDPE (60%)+CaCO3 (40%)), and bacterial communities attached to blended plastics exhibited significantly variation with aging times. Overall, promoting the marketable application of blended plastics is risky if their environmental behavior is not effectively addressed.


Assuntos
Plásticos Biodegradáveis , Poluentes Químicos da Água , Bactérias , Microplásticos/toxicidade , Plásticos , Poliésteres , Polietileno , Solo , Amido , Água
11.
Nat Nanotechnol ; 17(4): 396-402, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35288672

RESUMO

Parametric nonlinear optical processes are at the heart of nonlinear optics underpinning the central role in the generation of entangled photons as well as the realization of coherent optical sources. Exciton-polaritons are capable to sustain parametric scattering at extremely low threshold, offering a readily accessible platform to study bosonic fluids. Recently, two-dimensional transition-metal dichalcogenides (TMDs) have attracted great attention in strong light-matter interactions due to robust excitonic transitions and unique spin-valley degrees of freedom. However, further progress is hindered by the lack of realizations of strong nonlinear effects in TMD polaritons. Here, we demonstrate a realization of nonlinear optical parametric polaritons in a WS2 monolayer microcavity pumped at the inflection point and triggered in the ground state. We observed the formation of a phase-matched idler state and nonlinear amplification that preserves the valley population and survives up to room temperature. Our results open a new door towards the realization of the future for all-optical valley polariton nonlinear devices.

12.
Aquat Toxicol ; 244: 106097, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35085953

RESUMO

It has been demonstrated that some conventional microplastics (CMPs) have toxicities to organisms, however, whether biodegradable microplastics (BMPs) have similar potential risks to marine ecosystems remains to be elucidated. Therefore, this study aimed to investigate i) the effects of CMPs (i. e., micro-sized polyethylene (mPE) and polyamide (mPA)) on marine algae Chlorella vulgaris; and ii) the potential effects of BMPs (i.e., micro-sized polylactic acid (mPLA) and polybutylene succinate (mPBS)) on C. vulgaris. The results showed that either CMPs or BMPs inhibited the growth of microalgae compared with the control. The maximum inhibition ratio of the four types of MPs on C. vulgaris were 47.24% (mPE, 1 000 mg/L), 40.36% (mPA, 100 mg/L), 47.95% (mPLA, 100 mg/L) and 34.25% (mPBS, 100 mg/L), respectively. Among them, mPLA showed the strongest inhibitory effect on the growth of C. vulgaris. Interestingly, the MPs can stimulate the contents of pigments (e.g., chlorophyll a, chlorophyll b, and carotenoid), which may be acted as cellular defense to the stress induced by MPs. The results also showed that MPs stimulated the production of EPS. Under the investigated condition, the strongest inhibition on C. vulgaris was induced by mPLA, and followed by mPE, mPA, and mPBS. It was found that the factors such as the physicochemical properties of MPs (e.g., shading effect, the roughness of surface, the increase in potential), the chemical changes (i.e., the release of additives, the increase of oxidative stress) contributed to the inhibitory effects of MPs on microalgae, but the deciding factor remains to be further systematically explored.


Assuntos
Chlorella vulgaris , Microalgas , Poluentes Químicos da Água , Clorofila A , Ecossistema , Microplásticos , Plásticos , Poluentes Químicos da Água/toxicidade
13.
Sci Total Environ ; 808: 152070, 2022 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-34863766

RESUMO

Microplastics (MPs; <5 mm) and oil pollution have been receiving global attention. To date, the adsorption mechanism of petroleum by MPs is largely unknown. This study investigated the adsorption of petroleum on micro-sized polyethylene (mPE) undergoing aging (days 0, 15, 30, 90 and 180). The petroleum adsorption capacity of mPE was further assessed at varying pH (2, 5, 7.32, 10 and 12), temperature (4, 15, 25, 45 and 65 °C) and in presence of coexisting pollutants (Cu, bisphenol A (BPA) and petroleum). The results indicated that the adsorption capacity of mPE increased with the prolonged aging time and smaller-sized particles, while the adsorption capacity of the 550 and 165 µm mPE undergoing aging increased by 12.7%-50.9% and 22.1%-63.9%, respectively. The adsorption kinetics and isotherm model of mPE on petroleum were well fitted by pseudo-second order, intraparticle diffusion, Freundlich and Langmuir models, showing the sorption behavior was controlled by the diffusion of pores, liquid film diffusion, and surface adsorption. The petroleum adsorption capacity of mPE was predominant affected by surface roughness, specific surface area, hydrophobicity, oxidation functional groups, adsorption sites, hydrogen bonds, while zeta potential and crystallinity may not be the crucial factors. Likewise, temperature and pH may influence the characteristics of petroleum, and further result in a decreasing adsorption capacity of mPE to petroleum. The highest adsorption capacity of mPE to petroleum was reached at pH 7.32 and 25 °C. The coexisting Cu, BPA and petroleum competed for adsorption sites on the surface of mPE. These findings could fundamentally provide new insights for environmental risk assessment of MPs, particularly for the specific location like harbor which is commonly rich in MPs and petroleum simultaneously.


Assuntos
Petróleo , Poluentes Químicos da Água , Adsorção , Cinética , Plásticos , Polietileno , Água do Mar , Poluentes Químicos da Água/análise
14.
Foods ; 10(11)2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34828810

RESUMO

This work investigated the effect of lipase addition on a Chinese traditional fermented fish product, Suanzhayu. The accumulation of lactic acid and the decrease of pH during the fermentation were mainly caused by the metabolism of Lactobacillus. The addition of lipase had little effect on pH and the bacterial community structure but promoted the growth of Proteus. The addition of lipase promotes the formation of volatile compounds, especially aldehydes and esters. The formation of volatile compounds is mainly divided into three stages, and lipase had accelerated the fermentation process. Lactobacillus, Enterococcus and Proteus played an important role not only in inhibition of the growth of Escherichia-Shigella, but also in the formation of flavor. This study provides a rapid fermentation method for the Suanzhayu process.

15.
Sci Adv ; 7(46): eabj6627, 2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34757800

RESUMO

Ultrafast all-optical switches and integrated circuits call for giant optical nonlinearity to minimize energy consumption and footprint. Exciton polaritons underpin intrinsic strong nonlinear interactions and high-speed propagation in solids, thus affording an intriguing platform for all-optical devices. However, semiconductors sustaining stable exciton polaritons at room temperature usually exhibit restricted nonlinearity and/or propagation properties. Delocalized and strongly interacting Wannier-Mott excitons in metal halide perovskites highlight their advantages in integrated nonlinear optical devices. Here, we report all-optical switching by using propagating and strongly interacting exciton-polariton fluids in self-assembled CsPbBr3 microwires. Strong polariton-polariton interactions and extended polariton fluids with a propagation length of around 25 µm have been reached. All-optical switching on/off of polariton propagation can be realized in picosecond time scale by locally blue-shifting the dispersion with interacting polaritons. The all-optical switching, together with the scalable self-assembly method, highlights promising applications of solution-processed perovskites toward integrated photonics operating in strong coupling regime.

16.
Int J Food Microbiol ; 334: 108839, 2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-32906081

RESUMO

Flavourzyme is known to promote protein decomposition, resulting in more peptides and amino acids which can improve the quality of fermented foods. In this study, the effects of flavourzyme addition on the fermentation of Suanzhayu fish were investigated. The results showed that the addition of 50 U/g flavourzyme reduced the water activity (aw) of products and promoted the release of trichloroacetic acid (TCA)-soluble peptides and free amino acids (FAAs). Thus, the stability of the product was improved and its nutritional value was increased. In addition, with the addition of flavourzyme, Lactobacillus and Saccharomyces more quickly became the dominant genera in the fermentation. Furthermore, the formation of alcohols, aldehydes, and esters was promoted in flavourzyme addition group. Redundant analysis (RDA) indicated that Lactobacillus and Lactococcus play important roles in the formation of flavors, especially for the characteristic flavors of Suanzhayu. Flavourzyme addition may be a novel method to greatly improve the properties of Suanzhayu and shorten the fermentation time.


Assuntos
Endopeptidases/metabolismo , Alimentos Fermentados , Peixes , Microbiota , Compostos Orgânicos Voláteis/química , Aminoácidos/metabolismo , Animais , Fermentação , Alimentos Fermentados/análise , Alimentos Fermentados/microbiologia , Lactobacillales/classificação , Lactobacillales/metabolismo , Peptídeos/metabolismo , Saccharomyces/metabolismo , Paladar , Compostos Orgânicos Voláteis/metabolismo
17.
J Agric Food Chem ; 67(4): 1156-1164, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30607946

RESUMO

Nine transformants of Rhodosporidium toruloides with significant changes in the carotenoid profile were obtained by Agrobacterium tumefaciens-mediated transformation, including a white, three red, and four yellow mutants. A red mutant A1-15-BRQ that showed a high torularhodin production was selected for culture condition optimization. Results indicated that the torularhodin yield was boosted with glucose as the carbon source, at a carbon/nitrogen ratio of 22, a loading volume of 75 mL, and 28 °C. The torularhodin yield of 21.3 mg/L consisting of 94.4% total carotenoids was obtained by Box-Behnken design experiments. The torularhodin yield was 17.0-fold higher than that of the wild type, with time shortened from 9 to 3 days. This study reports an effective strategy for improving torularhodin production and provides a candidate R. toruloides strain for highly selective production of torularhodin.


Assuntos
Agrobacterium tumefaciens/fisiologia , Carotenoides/biossíntese , Meios de Cultura/metabolismo , Rhodotorula/genética , Rhodotorula/metabolismo , Transformação Genética , Meios de Cultura/química , Glucose/metabolismo , Nitrogênio/metabolismo
18.
Nanomaterials (Basel) ; 8(6)2018 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-29857502

RESUMO

Fluorescent carbon quantum dots (CQDs) have held great promise in analytical and environmental fields thanks to their congenitally fascinating virtues. However, low quantum yield (QY) and modest fluorescent stability still restrict their practical applications. In this investigation, a green hydrothermal strategy has been devised to produce water-soluble nitrogen/phosphorus (N/P) co-doped CQDs from edible Eleocharis dulcis with multi-heteroatoms. Without any additives and further surface modifications, the resultant CQDs exhibited tunable photoluminescence just by changing hydrothermal temperatures. Appealingly, they showed remarkable excitation-dependent emission, high QY, superior fluorescence stability, and long lifetime. By extending the CQDs solutions as a "fluorescent ink", we found their potential application in the anti-counterfeit field. When further evaluated as a fluorescence sensor, the N/P co-doped CQDs demonstrated a wide-range determination capability in inorganic cations, and especially the remarkable sensitivity and selectivity for elemental Fe3+. More significantly, the green methodology we developed here can be readily generalized for scalable production of high-quality CQDs with tunable emission for versatile applications.

19.
Appl Biochem Biotechnol ; 184(1): 113-123, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28624998

RESUMO

Limiting nitrogen supply has been routinely used as the master regulator to direct lipid biosynthesis. However, this strategy does not work with nitrogen-rich substrates, such as Jerusalem artichoke (JA), a fructose-based biomass, while it is difficult to obtain a high carbon-to-nitrogen (C/N) molar ratio. In this study, an alternative strategy to promote lipid accumulation by the oleaginous yeast Trichosporon fermentans CICC 1368 was developed by limiting phosphorous supply, and this strategy was implemented with JA hydrolysate as substrate. We showed that lipid accumulation was directly correlated with the C/P ratio of the culture media for T. fermentans. The time course of cell growth and lipid production was analyzed in a media with an initial C/P ratio of 6342, and the cellular lipid content could reach up to 48.5% of dry biomass. Moreover, JA hydrolysates were used as substrate for microbial lipid accumulation, under high C/P molar ratio condition, lipid yield, lipid content, and lipid coefficient increased by 10, 30, and 34%, respectively. It showed that by limiting phosphorus, the conversion of sugar into lipids can be improved effectively. Limiting phosphorus provides a promising solution to the problem of microbial lipid production with nitrogen-rich natural materials.


Assuntos
Biomassa , Frutose/metabolismo , Metabolismo dos Lipídeos , Fosfatos/metabolismo , Trichosporon/metabolismo , Meios de Cultura
20.
Front Microbiol ; 9: 3003, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30662432

RESUMO

Chouguiyu, a Chinese traditional fermented fish, is famous for its uniquely strong odor and desirable taste. However, traditional spontaneous fermentation often resulted in contamination and unstable quality of products. In this study, individual or conjunctive inoculation of two indigenous lactic acid bacteria (LAB), Lactococcus lactis M10 and Weissella cibaria M3, was tested for their effect on improving Chouguiyu's quality. It was shown that inoculation would not affect the system's pH, while increased the total bacteria count and lactic acid bacteria amounts. Matrix-assisted laser desorption/ionization time-of-flight mass (MALDI-TOF) analysis results revealed that Lactoc. lactis M10 and W. cibaria M3 could quickly occupy a dominant position in the ecosystem, and Lactoc. lactis M10 played an important role in the control of spoilage bacteria. Volatile basic nitrogen (TVB-N), thiobarbituric acid reactive substances (TBARS), and biogenic amines results also showed that Lactoc. lactis M10 had a positive effect on improving the product's quality. Co-inoculation of Lactoc. lactis M10 and W. cibaria M3 could promote the formation of flavor according to the E-nose and gas chromatography-mass spectrometer (GC-MS) analyses, especially for the aroma-active and key volatile compounds. PCA plots of E-nose and hierarchical clustering analysis of GC-MS profiles revealed that the co-inoculation sample at the fifth day (LW5) was the most similar to the natural fermentation sample at the seventh day (C7). The overall acceptance of LW5 was also the closest to that of C7 in sensory evaluation. In conclusion, mixed starter culture was shown to have a good effect on improving product quality and enhancing flavor with fermentation time shortened by 29%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...